Infrared Laser Chemistry of Trichlorosilane in View of Silicon Isotope Separation

M. Polianski, O. V. Boyarkin,* and T. R. Rizzo

Laboratoire de chimie physique moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

V. M. Apatin, V. B. Laptev, and E. A. Ryabov*

Institute of Spectroscopy RAS, 142190 Troitsk, Moscow region, Russia

Received: June 10, 2003; In Final Form: July 29, 2003

With a view toward laser isotope separation of Si, we have studied infrared multiphoton dissociation (IRMPD) of room temperature trichlorosilane, SiHCl₃. Over the wavelength range investigated, multiphoton dissociation of the room temperature species exhibits a maximum efficiency at 12.6 μ m and a threshold fluence of only \sim 1 J/cm². Vibrational overtone preexcitation of SiHCl₃ to the first SiH-stretch overtone (2 ν_1) prior to IRMPD results in a 10-fold increase of the dissociation yield compared to molecules with only thermal excitation. In an effort to collect the nascent SiCl₂ dissociation fragments, we have tested a number of different molecules that could serve as a scavenger to convert them into a stable gaseous compound. Several of these molecules react directly with trichlorosilane after being decomposed by collisional energy transfer from vibrationally excited SiHCl₃ and therefore are not suitable for a laser isotope separation process. Of the compounds tested, we find that only BCl₃ scavenges SiCl₂ without significant reaction with the starting material.

I. Introduction

The large increase in thermal conductivity of silicon upon isotopic purification¹ and the predicted unique properties of silicon isotope superlattices² suggest significant improvement of semiconductor devices upon use of isotopically enriched Si. Producing isotopically pure semiconductors is, however, currently limited by the high cost of enrichment. The development of economically feasible approaches for isotopic enrichment of these materials would facilitate exploring their potential in practical devices. The method of molecular laser isotope separation (MLIS) based on infrared multiphoton dissociation (IRMPD) has been investigated for the last three decades and applied to many isotopes, and recently it has been implemented for commercial production of carbon-13.3 While isotope separation of silicon by IRMPD of naturally abundant (92.1% ²⁸Si, 4.7% ²⁹Si, 3.2% ³⁰Si) samples of Si(OCH₃)₄ and ((CH₃)₃Si)₂O,⁴ CH₃SiF₃, and C₆H₅SiF₃⁵ has achieved a maximum enrichment in 30 Si of only 5–15%, this approach has shown some promise for laboratory-scale separation of silicon isotopes using Si_2F_6 as a working molecule,⁶⁻⁸ with a reported enrichment of ³⁰Si to 46% in the SiF₄ dissociation product⁶ and 20% ²⁹Si in the SiF₂ fragment.⁸ Although this is currently the most advanced laser-based technique for silicon isotope separation, the present level of enrichment is still far below that required for electronic applications.

A new highly selective MLIS approach based on overtone preexcitation of a high frequency vibration followed by IRMPD of the preexcited molecules has been recently proposed and studied in view of separating carbon⁹ and silicon¹⁰ isotopes. In both cases, this approach has achieved high isotopic selectivity, allowing enrichment of minor isotopes up to 99% in a single-stage process. For carbon isotope separation, this new technique

has been applied to CF₃H, which as a symmetric top has a sharp, prominent Q-branch in the C–H stretch overtone bands, allowing efficient preexcitation of the parent molecules. In the case of silicon, this approach has been tested with SiH₄, a spherical top with a broad Q-branch in the Si–H overtone bands and a low density of vibrational states. These characteristics, along with the low pressure used in these experiments, resulted in a fairly low estimate for the productivity. To separate silicon isotopes successfully using the overtone-preexcitation infrared multiphoton dissociation (OP-IRMPD) approach, one must find a more suitable parent compound.

We report here our investigation of the applicability of the OP-IRMPD technique to the molecule trichlorosilane (SiHCl₃). This molecule is a good candidate for such an approach in that it has a light atom stretch vibration for overtone preexcitation (v_1) that exhibits a sharp, $\sim 1 \text{ cm}^{-1}$, Q-branch.^{11,12} In the minor isotopic species the Q-branch has been assigned only for the fundamental transitions.¹³ Extrapolation of these data to the first overtone suggests ${\sim}2.6~{\rm cm}^{-1}$ isotopic shift per mass unit. The $2\nu_1$ Q-branch in the ²⁹SiHCl₃ may partially overlap with a "hot" band, while the position of this branch in the ³⁰Si species should allow a significant isotopic selectivity of the preexcitation, especially at low temperatures, when the "hot" bands are substantially supressed. The particular selectivity figures for different preexcitation conditions have to be determined experimentally, perhaps with isotopically enriched SiHCl₃. In this work we use IRMPD of naturally abundant SiHCl3 molecules vibrationally preexcited to the first Si-H stretch overtone to determine optimal parameters for selective dissociation of these species relative to the ground-state molecules, since this puts an upper limit for the isotopic selectivity of the process. Performing isotope-selective dissociation of the parent molecule is necessary but not sufficent for a successful isotope separation scheme, however. As in any MLIS process, the dissociation fragment(s) generated by IRMPD carrying the isotope of interest,

^{*} Corresponding authors. E-mail: Oleg.Boiarkin@epfl.ch; Ryabov@isan.troitsk.ru.

Figure 1. Schematic energy level diagram for infrared multiphoton dissociation of vibrationally excited SiHCl₃ followed by LIF detection of SiCl₂.

which in the present case is SiCl₂, must be collected and separated from the parent compound. The main reaction pathway for these radicals is formation of solid polymers of the type $(SiCl_2)_n$. Collection of this polymeric material would be inconvenient. The use of scavengers to convert radical products of chemical reactions into stable gaseous compounds has already been demonstrated in MLIS experiments.^{14,15} In the second part of this work, we test the use of several potential scavenger molecules to collect the IRMPD products of SiHCl₃.

II. Experimental Section

Studies of SiHCl₃ dissociation by thermal^{16–18} and laser¹⁹ pyrolysis suggest that the lowest energy decomposition channel for trichlorosilane in the electronic ground state is the production of SiCl₂ and HCl:

$$\operatorname{SiHCl}_{3}^{\dagger\dagger} \rightarrow \operatorname{SiCl}_{2} + \operatorname{HCl}$$
 (1)

Under certain conditions, the SiCl₂ radicals polymerize to form $(SiCl_2)_n$.^{17,18} We measure in situ the *relative* dissociation yield of reaction 1 after IRMPD using laser-induced fluorescence (LIF) detection of SiCl₂ immediately after the dissociation laser pulse. To measure the absolute IRMPD yield of SiHCl₃, we monitor its change in concentration by direct absorption after a known number of irradiation pulses.

Figure 1 shows a schematic energy level diagram for IRMPD of vibrationally excited SiHCl₃ followed by LIF detection of SiCl₂. First, an IR laser pulse excites the first overtone band $(2\nu_1)$ of the Si-H stretch vibration. Approximately 400 ns later, a pulse from an NH₃ laser promotes some fraction of the vibrationally excited molecules to energies above the dissociation threshold via infrared multiphoton excitation of the ν_4 bending vibration. The SiCl₂ dissociation fragments are then detected by a third laser via LIF 600 ns after the preexcitation pulse. By choosing properly the dissociating frequency and fluence, one can dissociate selectively the preexcited molecules without significant dissociation of the ground-state species.

The apparatus we employ for these experiments, depicted schematically in Figure 2, has been described in detail elsewhere.^{20,21} Briefly, we generate 3-4 mJ of infrared radiation at 4450.5 cm⁻¹ for excitation of the first Si-H stretch overtone by difference frequency mixing the output of a Nd:YAG pumped dye laser with the fundamental of the same pump laser in a LiNbO₃ crystal. As a dissociating laser we use either a home-

Figure 2. Apparatus for experiments on IRMPD of preexcited SiHCl₃.

built NH₃ laser pumped by a pulsed CO₂ laser or the CO₂ laser directly. The dissociating pulse from the NH₃ laser largely resembles the pumping pulse, exhibiting a 150–200 ns initial peak and a 3–4 μ s long tail. Because we probe the SiCl₂ dissociation products by LIF after only the first 600 ns of the dissociating pulse, the parent molecules that we investigate have experienced only 32% of the total fluence.

For LIF detection of the SiCl₂ fragments at 325.084 nm (via the $\tilde{A}^{1}B_{1}$ (050) $\leftarrow X^{1}A_{1}$ (000) transition²²), we use the second harmonic of another Nd:YAG-pumped dye laser. The probe laser beam is combined with the preexcitation beam on a dichroic mirror. The latter is focused by an F = 60 cm lens, resulting in 1.5 J/cm² fluence in the beam waist. The two beams are overlapped with the counter-propagating NH₃ laser beam, which is focused by an F = 50 cm lens to the center of the vacuum chamber. Semiconductor grade SiHCl₃ (Aldrich) slowly flows through the chamber at constant pressure.

In the second part of this work where we concentrate on product collection, experiments on IR-laser-induced chemistry of SiHCl₃ in the presence of different scavenger molecules have been performed in small (2.3- and 6.6-cm long) cells equipped with salt windows. The NH3 laser beam is in this case focused by an F = 10 cm lens, resulting in a fluence of up to 10 J/cm^2 at the beam waist. Sharp focusing results in a significant variation of the dissociation fluence, and hence the dissociation yield, along the length of the cell. For simplicity we use an average dissociation yield, β , to characterize the process. This yield is calculated from the attenuation of the IR absorption bands of SiHCl₃ measured in an IR spectrophotometer before and after laser irradiation of the cell. We employ the same technique, IR spectrophotometry, for identification and concentration measurements of the products of chemical reactions between scavenger molecules and the primary dissociation products of SiHCl₃. For this we record IR spectra of the gas mixture in the cell before and after irradiation by a certain number of ammonia laser pulses. The difference of the two spectra is compared with reference spectra of the expected chemical products. Most of these reference spectra have been taken from literature, although some of them have been obtained in our laboratory. We define the relative dissociation yield of a particular product as the ratio of its quantity to the quantity of the dissociated trichlorosilane.

Figure 3. IRMPD yield for room-temperature SiHCl₃ as a function of the dissociation laser wavenumber (dots, connected by solid line). For comparison, an absorption spectrum of the ν_4 band in room-temperature SiHCl₃ is shown.

III. Results and Discussion

A. IRMPD of Room-Temperature and Vibrationally Preexcited SiHCl₃. Our first attempt at IRMPD of SiHCl₃ used excitation of the overlapped $2\nu_2$ and $\nu_4 + \nu_6$ bands¹¹ centered at 986 cm^{-1} by a CO₂ laser tuned to the 10R(20) and 10P(20) lines at 982.02 cm⁻¹ and 944.18 cm⁻¹, respectively. Under these conditions, we detected a product LIF signal only when the effective dissociation fluence exceeded 20-30 J/cm² for a sample pressure in the range of 0.1-2.0 Torr. Such high dissociation threshold fluence is likely due to the low absorption intensity of the pumped band, making this scheme unsuitable for a practical isotope separation process. This led us to use an ammonia laser for pumping the strong v_4 fundamental at 810.8 cm⁻¹. Figure 3 shows IRMPD yields measured for a few lines of the NH₃ laser using spectrometric detection of SiHCl₃ after the irradiation period. For comparison, an absorption spectrum of the v_4 band is plotted on the same figure. The frequency of maximum yield is shifted by $\sim 10-15$ cm⁻¹ to the lowfrequency side from the maximum of the absorption spectra, prompting us to use the NH₃ laser lines below 780 cm⁻¹ for IRMPD of vibrationally preexcited SiHCl₃.

The overall IRMPD efficiency of SiHCl₃ by the ammonia laser is significantly higher than that by the CO₂ laser. Despite the fact that the output energy of our ammonia laser on weak red lines (780, 773 cm⁻¹) is only 8–10% of the CO₂ laser energy, the dissociation yield is more than an order of magnitude higher than for direct dissociation of trichlorosilane by the latter. This suggests that infrared multiphoton excitation of trichlorosilane is 2 orders of magnitude more efficient when pumping through the ν_4 fundamental than that via the $2\nu_2/(\nu_4 + \nu_6)$ band. We thus concentrate on NH₃-laser-induced dissociation of SiHCl₃ in studying its suitability for isotope separation.

Figure 4 shows the dissociation yield, measured by LIF detection of SiCl₂, as a function of the effective dissociation fluence for both vibrationally unexcited SiHCl₃ and for SiHCl₃ molecules preexcited to the $2\nu_1$ vibrational level. Dissociation of molecules in both vibrational states increases significantly with increasing fluence over the range investigated, but the increase is slower for the preexcited species, in line with our expectations.²⁰ An appreciable number of preexcited molecules dissociates at a fluence below 1 J/cm², where the dissociation yield from the room-temperature species is still small. The ratio of these two dissociation curves, which we call the dissociation selectivity, is plotted on the same figure (right-hand scale). Along with the isotopic selectivity of the preexcitation step, the dissociation selectivity as defined here limits the isotopic selectivity of the OP-IRMPD approach. We expect infrared multiphoton dissociation of the preexcited molecules to be

Figure 4. IRMPD yield as a function of effective dissociation fluence for room-temperature SiHCl₃ (triangles) and for SiHCl₃ preexcited to the $2\nu_1$ level (squares), left-hand scale. The dissociation selectivity, which is the ratio of the two yields, is also plotted as a function of the fluence (open circles, right-hand scale). The NH₃ dissociation laser is tuned to 780 cm⁻¹, and the sample pressure is 0.5 Torr.

isotopically selective, since the vibration that we use for IRMPE, v_4 , should also have some isotopic shift. We do not expect this selectivity to be significant, however, because the v_4 absorption spectra of the two isotopic species in vibrationally preexcited room temperature molecules are strongly overlapped due to both rotational structure and vibrational statistical (inhomogeneous) broadening.²³ We can thus consider the dissociation selectivity plotted in Figure 4 as an estimate for the upper limit of isotopic selectivity in the overall OP-IRMPD process. At an NH₃ laser fluence of ~ 1.5 J/cm², where the dissociation yield of the preexcited SiHCl₃ is significant, this selectivity is only a factor of 5-6. This can be increased if one preexcites a higher fraction of molecules, but for an optical scheme with unfocused laser beams, which would be best from a practical point of view, the preexcitation fluence is limited to a few J/cm² because of the damage threshold of IR optical materials. Another way to increase the selectivity is to suppress the dissociation of the ground-state molecules and to favor that of the preexcited species by shifting the dissociation frequency further to the red from the v_4 fundamental. Using the lowest frequency line available from our NH₃ laser (773 cm⁻¹) results in an almost 2-fold increase in dissociation yield of the preexcited molecules compared to a 25-30% drop in the dissociation yield of the ground-state species. As a result, this change of dissociation frequency increases the selectivity by a factor of ~ 2.5 .

Figure 5 shows the dependence of the SiCl₂ LIF signals on SiHCl₃ pressure for both preexcited and room-temperature species dissociated by 1.5 J/cm² pulses of the ammonia laser tuned to 773 cm⁻¹. Because of collisional quenching of electronically excited SiCl₂, the LIF signal increases more slowly with pressure than the dissociation yield. The measured curves thus provide a lower limit for dissociation yield, especially for high pressure. However, since the change of LIF detection efficiency with pressure is the same for SiCl₂ produced by dissociation of ground-state and preexcited species, collisional quenching should not influence our measurements of dissociation selectivity, plotted in Figure 5 (right-hand scale). The selectivity reaches a maximum at ~ 0.5 Torr and then slowly drops with further increase of pressure, which is likely due to collisional vibrational deactivation of preexcited molecules. The initial increase of the selectivity can be explained by collisional rotational relaxation of a few states initially prepared by

Figure 5. IRMPD yield as a function of SiHCl₃ pressure for the roomtemperature molecules (triangles) and for the species preexcited to the $2\nu_1$ level (squares), left-hand scale. Dissociation selectivity, which is the ratio of the two yields, is also plotted as a function of pressure (open circles, right-hand scale). The NH₃ laser is tuned to 773 cm⁻¹, and the dissociation fluence is 1.5 J/cm².

preexcitation. This thermalization may populate rotational states that are favored for IRMPD by the 773 cm⁻¹ laser line, leading to an increased dissociation yield for the preexcited species. A selectivity of around 10 reached for the sample pressure of 1-2 Torr implies, for example, a maximum possible isotopic enrichment of ²⁹Si species to 35%. If the preexcitation fluence were doubled it will be still below the damage threshold for IR optics, but should increase the level of enrichment to 50%.

The dissociation selectivity can be improved by cooling the molecules. Indeed, at room temperature, 82% of SiHCl₃ molecules have thermal excitation in low-frequency vibrations ($\nu_3 = 257.7 \text{ cm}^{-1}$, $\nu_6 = 175.5 \text{ cm}^{-1}$), giving rise to "hot" bands in the IR absorption spectrum of the ν_4 . Multiphoton excitation through these "hot" bands may contribute significantly to dissociation of SiHCl₃ molecules without preexcitation. Lowering the working temperature will suppress this contribution and substantially increase the dissociation selectivity.

Collecting the SiCl₂ dissociation fragments in the gas phase requires the use of a scavenger molecule. Addition of a scavenger increases the working pressure and may influence the isotopic selectivity. In this regard, we have performed measurements of isotopic selectivity with He as a buffer gas. Addition of 9 Torr of He to 2 Torr of SiHCl₃ already decreases the selectivity by a factor of 5 due to an increased dissociation yield for the nonpreexcited molecules. In general, different collision partners will change this yield differently. Therefore, measurements of the selectivity should be performed for particular scavengers. Below, we report our results of a search for scavengers that could efficiently convert SiCl₂ fragments created by IRMPD to stable molecules, although we have not determined the selectivity achievable in the presence of these scavengers.

B. IR-Laser-Induced Chemistry of SiHCl₃. For IRMPD of room-temperature SiHCl₃ we employ an NH₃ laser tuned to the 797 cm⁻¹ line with a dissociation fluence at the beam waist of 4-6 J/cm². Careful measurements show that the absolute IRMPD yield depends linearly on the sample pressure for pressures below 1 Torr. This implies that in this range, dissociation is not influenced by collisional effects (i.e., vibrational deactivation, rotational thermalization). We thus use a working pressure of 0.5 Torr whenever we want to ensure collision-free IRMPD. For sample pressures up to 10 Torr, the

only gas-phase IRMPD product of pure trichlorosilane that we detect is HCl, in an amount equal to that of dissociated SiHCl₃. This is consistent with the lowest dissociation pathway for SiHCl₃, as described by eq 1. Over a long irradiation time we observe a solid deposit building up on the reactor windows, and its broad (\sim 50 cm⁻¹) absorption band centered at 602 cm⁻¹ suggests that this comes from $(SiCl_2)_n$ polymers. An efficient gas scavenger must therefore suppress the SiCl₂ polymerization and convert the radicals to a stable gas-phase product. Moreover, there are two additional requirements that a sucessful scavenger must meet in order to avoid scrambling the isotopic selectivity generated by the laser dissociation process-it should not react directly with the SiHCl₃ parent compound and it should not have an IR absorption band that overlaps with the frequency of the dissociation laser. Using the available chemical and spectroscopic data to judge their suitability, we selected a number of candidates for testing as scavengers of SiCl₂:

(a) di- and tri-atomics: O₂, CO₂, OCS;

(b) halogenated methanes: CH_2F_2 , CF_4 , CF_2Cl_2 , CH_2Br_2 , $CHBr_3$, CH_3I ;

(c) others: C_2H_4 , C_2F_4 , BCl_3 , $TiCl_4$, furan (C_4H_4O).

Each of these compounds has been mixed with trichlorosilane in the reaction cell and irradiated by the NH_3 laser, and the chemical composition of the reaction products were analyzed spectrophotometrically.

The laser-induced reaction of trichlorosilane with the smallest scavenger candidate, O2, exhibits a characteristic threshold dependence on SiHCl₃ pressure. Irradiation of 20 Torr of O₂ with more than 4 Torr of SiHCl₃ results in a visible flash and complete disappearance of trichlorosilane after a single laser shot together with the formation of a film on the windows that exhibits broad IR absorption bands, which we attribute to silicon oxides. We also detect HCl, (SiCl₃)₂O, SiCl₄, and some nonidentified molecule(s) with a siloxane-type Si-O-Si bond. At SiHCl₃ pressure below 1 Torr, the bright flash disappears and the dissociation yield drops to $\sim 0.7\%$ per laser shot. We detect no gaseous products under these conditions. These results are similar to those from thermal and photochemical oxidation of SiHCl₃.²⁴ It is likely that at a sufficiently high SiHCl₃ pressure, the laser radiation vibrationally heats the molecules to a temperature above the threshold where the chain oxidation reaction occurs.

Tests of CO₂, OCS, CH₂F₂, CF₄, C₂F₂, and C₂F₄ did not reveal detectable gaseous products when 6-90 Torr is mixed with 6 Torr of SiHCl₃ and the latter is irradiated with the ammonia laser. Various stable gaseous products have been detected, however, after IRMPD of SiHCl₃ mixed separately with CF₂-Cl₂, CH₂Br₂, CHBr₃, CH₃I, BCl₃, TiCl₄, and C₄H₄O. Table 1 summarizes these products for different mixtures of the tested scavengers with trichlorosilane. Among all the tested compounds, CF₂Cl₂ seems to be the best suited for scavenging SiCl₂ fragments. Irradiation of a mixture of CF₂Cl₂ with trichlorosilane favors formation of SiCl₄ and SiFCl₃, although several other compounds are also detected (Table 1). Figure 6 shows the yield of some of the detected products as a function of CF₂Cl₂ pressure. The yield of SiCl₄ is higher than the other products over the entire pressure range and at 60 Torr of CF₂Cl₂ reaches \sim 70% of SiCl₃H dissociated by each laser shot in the cell irradiated volume. Thus, at CF₂Cl₂ pressures in this range, most of the SiCl₂ fragments are collected as a single chemical species.

Whether or not CF_2Cl_2 can be used for isotope separation depends on whether it scrambles significantly the isotopic selectivity of the overall process. This is largely determined by the mechanism of the $SiCl_2 + CF_2Cl_2$ reaction and by collisional

Figure 6. Yields of different gas products as a function of CF_2Cl_2 pressure in IRMPD of SiHCl₃ mixed with CF_2Cl_2 : 1 (open circles) – SiCl₄, 2 (closed circles) – SiFCl₃, 3 (open squares) – SiF₂Cl₂, 4 (triangles) – SiF₃Cl. The yields are normalized to the dissociation yield of SiHCl₃ per each laser shot in the cell irradiated volume.

 TABLE 1: IR Photolysis of SiHCl₃ Mixed with Different

 Scavengers

		SiHCl ₃	scavenger	
		pressure,	pressure,	gaseous
no.	scavenger	Torr	Torr	products
1	CF ₂ Cl ₂	0.5	2 - 20	none
		6	3-60	SiCl ₄ , SiFCl ₃ , SiF ₂ Cl ₂ , SiF ₃ Cl,
				C_2F_4 , HCl
2	CH_2Br_2	0.5	3	none
		6	4-36	presumably, SiBr _{4-n} Cl _n $n = 1-3$, C ₂ H ₄ , C ₂ H ₂ , HCl
3	CH ₃ I	0.5	20	none
		4	20	presumably, $SiI_{4-n}Cl_n n = 2-3$, C ₂ H ₄ , CH ₄ , HCl
4	BCl ₃	0.5	5 - 27	SiCl ₃ BCl ₂
		6	20-212	SiCl ₄ , SiCl ₃ BCl ₂ , HCl
5	TiCl ₄	6	6-15	SiCl ₄ , presumably deposit of TiCl ₃ and TiCl ₂
6	C ₄ H ₄ O	0.5	15	C_2H_2 , unidentified IR absorption band at 633 cm ⁻¹
		2.5	18	C_2H_4 , C_2H_2 , unidentified IR absorption bands at 1304, 908, and 633 cm ⁻¹

vibrational energy transfer processes. It is known that addition and insertion reactions are the main types of SiCl₂ radical reactions with stable compounds.¹⁶ However, only with BCl₃ do we unambiguously find the insertion reaction product, SiCl₃-BCl₂ (Table 1), identified by its characteristic IR absorption spectrum.²⁵ The mechanism of reaction of SiCl₂ with other tested scavengers under laser radiation does not appear to be a simple addition or insertion. We suggest that a common feature of these reactions is the initial thermal decomposition of the scavenger during laser pulse via vibrational energy transfer from highly excited SiHCl₃. Indeed, with a typical V-V' energy transfer rate²⁶ $k \sim 10^6 \text{ s}^{-1} \text{ Torr}^{-1}$, a laser pulse duration $\tau \sim 10^{-6} \text{ s}$ and a total pressure $p \sim 10$ Torr, the collisional exchange parameter, $k\tau p$, is approximately equal to 10. Under these conditions we expect substantial vibrational energy transfer from highly excited SiHCl₃ to other molecules. Moreover, a fraction of these species that do not reach dissociation threshold during laser pulse will dissipate their vibrational energy in post-pulse collisions. We

believe that this transferred vibrational energy is sufficent to dissociate some fraction of the scavenger molecules. The importance of free radicals created by decomposition of a scavenger in binding SiCl₂ fragments is supported by the following experiments. First, an increase of a scavenger pressure (e.g., CF_2Cl_2 or CH_2Br_2) results in an increase in SiHCl₃ dissociation. Normally, the addition of a polyatomic gas results in a drop of dissociation yield due to collisional deactivation of the laser-excited species. In principle, the observed increase of dissociation yield could be explained by collisional refilling of a rotational bottleneck.¹⁵ However, substitution of the scavengers with nonreactive Xe and N2 at moderate pressures results in a reduced SiHCl₃ dissociation yield, despite the fact that these two gases are highly efficient for rotational relaxation.¹⁵ This prompts us to conclude that rotational relaxation is not important at typical pressures of our experiments. Moreover, it leads us to suggest that the observed growth of the dissociation yield with increasing pressure of a scavenger could be due to the reaction of SiHCl₃ with fragments created by collision-induced decomposition of the scavenger. A second result in support of this suggestion is the observation that a high yield of the laser-induced reaction is observed only for the scavengers that have a dissociation limit near or lower than that of SiHCl₃ ($D_0 = 72$ kcal/mol¹⁸). It is simply difficult to dissociate a scavenger in collisions with molecules that have little vibrational energy.

Two more sets of experiments have been performed to clarify the mechanism of the laser-induced reaction. In one, vibrational heating of scavengers in collisions with SiHCl₃ has been strongly suppressed by lowering the pressure of trichlorosilane by more than an order of magnitude—down to 0.5 Torr. No gaseous products were detected under these conditions for any scavenger (see Table 1) except BCl₃, where we detect the same insertion product—SiCl₃BCl₂. In another experiment we have performed IRMPD of CF₂Cl₂ by a CO₂ laser through the lowest dissociation channel of these molecules:¹⁵

$$CF_2Cl_2 + nh\nu \rightarrow CF_2Cl + Cl$$
(2)

These experiments were carried out under conditions where the CF_2Cl_2 pressure (0.35 and 0.7 Torr) is much smaller than that of SiHCl₃ (6 Torr). The SiHCl₃ molecules do not absorb radiation from the CO₂-laser, and collisional energy transfer from the small number of excited CF_2Cl_2 to SiHCl₃ is negligible. Therefore, trichlorosilane cannot dissociate under these conditions by either direct IRMPD or collisional heating from hot trichlorosilane. Nevertheless, IRMPD of CF_2Cl_2 in mixtures with SiHCl₃ results in an approximately equal consumption of both species, and it is equal to the yield of IRMPD for pure CF_2Cl_2 (reaction 2). The resulting gaseous products, SiCl₄, SiFCl₃, and C_2F_4 , are the same as those detected upon IRMPD of 6 Torr of SiHCl₃ mixed with an excess CF_2Cl_2 (as discribed above).

Both results support our proposed mechanism of the laserinduced reaction of the investigated scavengers in mixtures with SiHCl₃. When more than 3-6 Torr of trichlorosilane in a mixture with a scavenger is irradiated by the ammonia laser, the excited SiHCl₃ heats and dissociates the scavenger in collisions. Dissociation fragments of the scavenger may react with SiCl₂ radicals or with the SiHCl₃ starting material, the latter of which will scramble the isotopic selectivity gained by laser overtone preexcitation of SiHCl₃. This leads us to conclude that at moderate trichlorosilane pressure, none of the tested compounds, and in particular CF₂Cl₂, can be used as an SiCl₂ scavenger in an IRMPD-based isotope separation process. At low trichlorosilane pressure (<0.5 Torr), however, the rate of

scavenger reaction with the starting material becomes insignificant and products are formed typically by insertion of SiCl₂ radicals into a suitable scavenger bond. Such a reaction should not deteriorate isotopic selectivity gained at earlier stages (i.e., by overtone preexcitation followed by IRMPD) of the isotope separation process. Our estimate shows that at trichlorosilane pressures below 0.5 Torr, up to 40% of all available SiCl₂ fragments can be collected this way by inserting the fragments into a single B–Cl bond in BCl₃, forming SiCl₃BCl₂ molecules. However, the low pressure of SiHCl₃ together with a 60% loss of fragments still make the use of BCl₃ as a SiCl₂ scavenger in the overtone preexcitation-IRMPD isotope separation process questionable. Moreover, BCl3 is highly undesirable if the enriched material is used in a semiconductor fabrication, where boron is one of the doping elements whose level must be controlled on a ppt level. More candidates should be tested to find an efficient scavenger for this process, preferably one that proceeds by a simple insertion reaction. In pre-selecting the candidates for such tests, one should keep in mind that SiCl₂ does not efficiently insert into C-F, C-Cl, C-Br, C-I bonds. On the basis of the known value for the SiCl₂ polymerization rate,²⁵ together with the concentration of SiCl₂ and the pressure of scavengers in our experiments, we estimate an upper limit for the rate of insertion into these scavengers to be 2×10^{-17} cm^{3}/s .

IV. Conclusions

With a view toward developing the overtone preexcitation-IRMPD approach for highly selective laser isotope separation of silicon, we have studied IRMPD of SiHCl₃ and subsequent reactions of the SiCl₂ dissociation fragment with potential scavengers of these fragments. The dissociation of roomtemperature SiHCl₃ by a CO₂ laser via the weak $2\nu_2/(\nu_4 + \nu_6)$ band turns out to be inefficient, with a high (20–30 J/cm²) dissociation fluence threshold. The dissociation becomes 2 orders of magnitude more efficient and the fluence threshold drops below 1 J/cm² if one pumps the strong ν_4 fundamental by an ammonia laser. The spectral maximum of the IRMPD yield appears at ~795 cm⁻¹.

The dissociation efficiency increases even further when SiHCl₃ molecules are preexcited to the $2\nu_1$ overtone level. At sample pressures of 1–2 Torr, and preexcitration fluence of ~ 1.5 J/cm² the dissociation yield of the preexcited molecules is an order of magnitude higher than that of the room-temperature species. This result, if scaled to practically realistic laser parameters of lasers, should result in an enrichment of the minor Si isotopes in the SiCl₂ dissociation fragments of up to 50%. Lowering the temperature will suppress the ν_4 "hot" bands and may significantly improve this number.

Given this high degree of selectivity in the excitation process, we have performed an extensive search for a suitable scavenger for the SiCl₂ fragments. At moderate pressures of SiHCl₃, we have found that almost all tested scavengers react directly with trichlorosilane after being activated by collisional energy transfer from vibrationally excited SiHCl₃. This reaction will scramble isotopic selectivity of the process. At low SiHCl₃ pressure where collisional heating is suppressed, the main pathway of the reaction is an insertion of SiCl₂ into a suitable bond of the scavenger. We have found that at pressures below 0.5 Torr, BCl₃ reacts with SiCl₂ fragments in this way, forming SiCl₃BCl₂. At the same time we do not observe evidence for a direct reaction of BCl₃ and SiHCl₃, allowing this compound to scavenge SiCl₂ without scrambling isotopic selectivity. Our estimate shows that BCl₃ can scavenge at most 40% of all SiCl₂ fragments.

with the relatively low sample pressure (<0.5 Torr), this low collection efficiency would limit substantially the productivity of the isotope separation process and make the use of BCl₃ as a scavenger questionable.

The use of our overtone-preexcitation IRMPD approach to MLIS of Si with SiHCl₃ as a parent molecule remains dependent on finding an efficient scavenger for SiCl₂. Additional compounds can be tested for this purpose, keeping in mind the constraints described here, although the combination of a high rate of SiCl₂ polymerization and high SiHCl₃ reactivity makes this problem difficult to solve. Alternatively, one may collect SiCl₂ via polymerization, since during this process SiCl₂ does not react with the starting material³¹ and, therefore, it should not scramble the isotopic selectivity.

Acknowledgment. This work has been supported by the Fonds National Suisse through Grants 20-65138.01 and SCOPES-7SUPJ062201, and by the Russian Foundation for Basic Research through Grant 01-03-97013.

References and Notes

(1) Capinski, W. S.; Maris, H. J.; Bauser, E.; Silier, I.; Asenpalmer, M.; Ruf, T.; Cardona, M.; Gmelin, E. *Appl. Phys. Lett.* **1997**, *71* (15), 2109. Ruf, T.; Henn, R. W.; Asen-Palmer, M.; Gmelin, E.; Cardona, M.; Pohl, H. J.; Devyatych, G. G.; Sennikov, P. G. Solid State Commun. **2000**, *115*, 243.

(2) Haller, E. E. J. Appl Phys. 1995, 77 (7), 2857.

(3) Baranov, V. Y.; Dyadkin, A. P.; Maluta, D. D.; Pigulski, S. V.; Laptev, V. P.; Letokhov, V. S.; Ryabov, E. A. *Technical Digest of the Laser Applications and Technology*; Moscow, Russia, 2002. Letokhov, V. *Laser Optoelectron.* **1998**, *30*, 29.

(4) Laptev, V. B.; Tumanova, L. M.; Ryabov, E. A. *High Energy Chemistry* **1998**, *32*, 108.

(5) Baranov, V. Y.; Dyad'kin, A. P.; Kuz'menko, V. A. Sov. J. Quantum Electron. **1990**, 20, 450.

(6) Kamioka, M.; Arai, S.; Ishikawa, Y.; Isomura, S.; Takamiya, N. Chem. Phys. Lett. **1985**, 119 (4), 357.

(7) Noda, T.; Suzuki, H.; Araki, H. *Fusion Eng. Des.* **1998**, *41* (Sep), 173. Tanaka, K.; Isomura, Sh.; Kaetsu, H.; Yatsurugi, Y.; Hasimoto, M.;

Togashi, K.; Arai, S. Bull. Chem. Soc. Jpn. 1996, 69, 493.
(8) Okada, Y.; Takeuchi, K. J. Nucl. Sci. Technol. 1997, 34 (4), 413.
(9) Boyarkin, O. V.; Kowalczyk, M.; Rizzo, T. R. J. Chem. Phys. 2003,

(9) Boyarkin, O. V.; Kowalczyk, M.; Kizzo, T. K. J. Chem. Phys. 2003, 118, 93.

(10) Makowe, J.; Boyarkin, O. V.; Rizzo, T. R. J. Phys. Chem. A 2002, 106, 5221.

(11) Burger, H.; Ruoff, A. Spectrochim. Acta 1970, 26A, 1449.

(12) Yun, D.; Sheng-Gui, H.; Jing-Jing, Z.; Shui-Ming, H.; Xiang-Huani, W.; Qing-Shi, Z. *Mol. Phys.* **2001**, *99* (19), 1669.

(13) Fuss, W.; Weizbauer, S. Ber. Bunsen-Ges. Phys. Chem. 1995, 99 (3), 289.

(14) Ambartsumyan, R. V.; Letokhov, V. S.; Ryabov, E. A.; Chekalin, N. V. *JETP Lett.* **1974**, *20*, 273.

(15) Bagratashvili, V. N.; Letokhov, V. S.; Makarov, A. A.; Ryabov, E. A. *Multiple Photon Infrared Laser Photophysics and Photochemistry*; Harwood: Amsterdam, 1985.

(16) Reactive Intermediates. Abramovich, R. A.; Plenum Press: New York, London, 1982; Vol. 2, p 323.

(17) Kruppa, G. H.; Shin, S. K.; Beauchamp, J. L. JCP 1990, 94, 327.

(18) Su, M.-D.; Schlegel, H. B. JPC 1993, 97, 9981.

(19) Lavrushenko, B. B.; Baklanov, A. V.; Strunin, V. P. Spectrochim. Acta 1990, 46A, 479.

(20) Boyarkin, O. V.; Rizzo, T. R.; Rueda, D. S.; Quack, M.; Seyfang,
 G. JCP 2002, 117, 9793.

(21) Makowe, J.; Boyarkin, O. V.; Rizzo, T. R. J. Phys. Chem. A 2000, 104, 11505.

(22) Suzuki, M.; Washida, N.; Inoue, G. Chem. Phys. Lett. 1986, 131, 24.

(23) Boyarkin, O. V.; Ionov, S. I.; Bagratashvili, V. N. Chem. Phys. Lett. **1988**, 106, 146. Makarov, A. A.; Petrova, I. Y.; Ryabov, E. A.; Letokhov, V. S. J. Phys. Chem. A **1998**, 102, 1438. Stuchebrukhov, A.; Ionov, S.; Letokhov, V. J. Phys. Chem. **1989**, 93, 5357.

(24) Emeleus, H. J.; Welch, A. J. E. J. Chem. Soc. 1939, 3, 1928.

(25) Timms, P. L. Inorg. Chem. 1968, 7, 387.

(26) Lambert, J. D. Vibrational and rotational relaxation in gases; Clarendon Press: Oxford, 1977.